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$pacetime is simulated by a pattern space--a finite topological space homotop- 
ically equivalent to the spacetime simulated. Unlike the Regge calculus, we ignore 
metrical properties. A calculus based on Boolean arithmetic is suggested to 
describe the changing of global topology of the pattern spaces, and is suitable 
for computer realization. 

1. INTRODUCTION 

Within the framework of Regge calculus (Regge, 1961), a real spacetime 
is replaced by a polyhedron which is a pattern space. This means that, given 
a polyhedron considered as a pattern space, the spacetime can be restored 
up to its metrical properties. Thus, the Regge calculus serves to describe a 
spacetime that is already defined somehow. However, it scarcely describes 
the dynamics of a global topology. 

The idea of using logic as a ground on which the topology grows belongs 
to Wheeler (Misner et aL, 1973), who proposed to consider events per se, 
not being placed into a spacetime. The calculus I propose describes the 
construction of spacetime from events. 

The spacetime is replaced (or simulated) by a finite topological space, 
called pattern space. The pattern space restores merely the topology of the 
spacetime, saying nothing about its geometry. That is why this calculation 
scheme is called pre-Regge calculus--it is the step preceding the building of 
Regge space (Regge, 1961). 

The pattern space is represented as a directed graph (digraph). The 
vertices of the digraph are spacetime points (or elementary events), while 
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280 Zapatrin 

the arrows linking the vertices show their tendency to each other. The coarser 
the topology is, the more arrows the pattern space contains. 

The apparent mathematical tool to describe the dynamics of the top- 
ology of pattern spaces is the Boolean machinery (Section 3). Each pattern 
space is associated with a Boolean matrix and the transition from one top- 
ology to another is described in terms of  Boolean arithmetics. 

The construction of new pattern spaces by given standard constituents 
is performed by means of surgery (Section 4). Sawing and pasting are 
described as weakening of the entire topology, while cutting strengthens the 
topology. All are described via two elementary operations with pattern 
spaces: stretching and cutting (which can be described in turn in Boolean 
language). In some sense the proposed calculus is the realization of Wheeler's 
spacetime machine (Misner et al., 1973) (Figure 1). 

Section 5 considers the description of the dynamics of the global top- 
ology within the bounds of pre-Regge calculus. The Boolean superspaee-- 
the space of pattern spaces--is introduced as the collection of all finite 
topological spaces together with an infinitely large number of separated 
"spare" points. The transition from one global topology to another is 
described as the variety of all possible paths in the Boolean superspace. Each 
path, in turn, can be decomposed into a sequence of elementary transitions, 
each of which is the action of a stretching or cutting operator. Consequently, 
if there is an amplitude (or something like an amplitude) assigned to each 
elementary transition, the Feynman sum for the transition amplitude 
between any two pattern spaces can be used. 

Hg. 1. The Wheeler spacetime machine. 
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2. QUASIORDERS AND GRAPHS ASSOCIATED WITH 
FINITE TOPOLOGIES 

In this section the mathematical structure of pattern spaces will be 
described in detail. Let X be a finite topological (FT) space. That is, X is 
finite and a collection r of subsets of X, called open subsets, is such that 

~ ,  X ~ r  

A, B ~ :  implies A n B ~ r  (2.1) 

A ~ ,  iEI implies U{Ai[i~I}~r 

The elements of X will be called points. Let xeX  be a point. A neighbor- 
hood of x is any open subset of X containing x. Since X is finite, the 
intersection of all neighborhoods of a point x is an open set; call it the open 
monad of x and denote it (x)~ or simply (x) if no ambiguity occurs: 

(x)~:= N{A lx~A~r} (2.2) 

The collection {(x)Ix~X} is the base of the topology r, namely each 
subset of X is open in v if and only if it is the union of elements of the base: 

A~r i f a n d o n l y i f  A=U{(a)~la~A} 

or, in other words, any open set contains the open monad of each of its points. 
Now define the binary relation, denote it also r, on X as 

xry if and only if y~(x),  (2.3) 

The defined relation r possesses the properties of reflexivity (xrx for 
any x) and transitivity (xry and yrz implies xrz), hence it is a quasiorder. 

The relation (2.3) is called the quasiorder associated with the finite 
topological space (X, r). 

Moreover, given a quasiorder r on X, define for each point its upper 
cone ur(x): 

ur(x) := {y~Xlxry} 

The collection of  all upper cones {ur(x) lx~X} forms the base of a topology 
on X called the topology generated by the quasiorder r, so that the following 
theorem holds: 

Given a finite set X, the topologies and quasiorders on X are in one-to- 
one correspondence. Given a topology r, the quasiorder associated with r 
generates just the topology r, and vice versa. 

Each finite quasiordered space (X, r) can be associated with a directed 
graph (digraph) G(X, r), called the Hasse diagram of (X, r), in the following 
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way. The set of vertices of G = G(X, r) is the set X~ and the arrows of G 
connect quasiordered pairs. This graph is the mathematical realization of  
pattern space [the graph definitions and notations are borrowed from Tutte 
(1984)]. 

The Hasse graph of a finite topological space (X, r) is the Hasse diagram 
of  the quasiorder associated with the topology r. 

The Hasse graph of an FT space is always reflexive (each vertex is 
connected with itself) and transitive (if there are arrows from x to y and 
from y to z, then there is an arrow from x to z). Thus no ambiguity occurs 
if in drawing the graph one always omits loops (arrows from x to x) and 
sometimes omits composite edges. Consider some examples. Let X = {a, b, c} 
be a three-element set. 

Example 1. r = { f~, a, { a, b } , X} . Using Isham's (1989) notation, one 
can omit braces and it can be written as 1= = a(ab). The monads are ( a )=  a, 
(b)=ab, (c)=abc; thus the quasiorder r is czb, cza, bra, and the Hasse 
graph is as shown in Figure 2. 

Example 2. The discrete topology ~ on X is ~ = 2 x = abc (any subset is 
open). The monads are ( a )=  a, (b)= b, (c)= c, and the quasiorder ~ is the 
equality relation given in Figure 3. 

Example 3. The undiscrete topology o = { ~ ,  X}. In this case (a) = (b) = 
(c) = X  and any pair is quasiordered (Figure 4). 

G(X,r)ffi o - - , :  ~ ~ O 
a b c 

Fig. 2. r=a[ah). 

o(x, o) = 

G(X, 8)ffi 0 �9 0 
a b c 

Fig. 3. The Hasse graph is totally disjoint. 

a 

b c 

Fig. 4. 

a b 

The Hasse graph is the 3-clique. 

O 
r 
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A clique Q is a complete subdigraph of G, namely each pair of vertices 
q, q'eQ are connected by the arrows q---,q' and q'~q.  In the case when 
there are arrows, say, from a to b as well as from b to a, the arrows are 
omitted. 

Now consider the collection T= T(X) of all topologies on X. As is 
outlined in Isham (1989) and Larson and Andima (1975), the set T is par- 
tially ordered by set inclusion (since any topology is a set of sets). Given 
two topologies a, fle T, a is said to be weaker (coarser) than fl and fl is 
stronger (finer) than a if a e f t ,  or, in other words, any set open in a is open 
in ft. Moreover, T is the lattice (suprema and infima do exist for each pair 
of topologies) with the greatest element 5 (the discrete topology) and the 
least element o (the undiscrete topology). This partial order can be expressed 
in terms of Hasse graphs. Let a, fle T, a is weaker than r ,  a n r ,  and P~ Q 
be the Hasse graphs associated with the topologies a, r ,  respectively. Evi- 
dently, the graphs P and Q have the same sets of vertices. The following 
statement always holds: 

Given two topologies on the set X, the Hasse graph of stronger topology 
is the subdigraph of the Hasse graph associated with the weaker topology. 

To corroborate this fact, consider an arrow of Q: xfly means that 
ye(x)a=~{AIxEAef l} .  However, the a-monad (x)~ is the intersection 
N {A [xe A e a } of a greater number of sets (since a c fl), hence (x)~ c (x)~ ; 
thus xfly implies xay and each arrow of Q is an arrow of P. This reasoning 
can be elucidated by comparison of Examples 1-3 cited above. 

The lattice operations on T, joins (suprema) and meets (infima), can 
also be described in terms of graphs. Let a and fl be two topologies on X 
associated with the Hasse graphs P and Q, respectively. The join a v fl is 
the weakest topology which is stronger than both a and ft. In terms of 
Hasse graphs that means that the graph H associated with the topology 
a v fl must be a subdigraph of both P and Q. In addition, any common 
subdigraph of both P and Q is a subdigraph of H. Therefore the graph H 
of the join topology a v fl is the digraph whose arrows are common arrows 
of P and Q: 

G(X, a v r) = G(X, a) c~ G(X, r) (2.4) 

(Evidently, this graph is reflexive and transitive.) 
Now consider the graph K associated with the meet a ^ r ,  which must 

contain all arrows of P as well as all arrows of Q. However, the graph K0 
whose arrows are exhausted by those of P and Q is reflexive, but may not 
be transitive, hence Ko = P n Q is not a Hasse graph in general. To obtain 
the required graph K, all possible composite arrows must be added to K0. 
This operation is called the transitive closure of the graph Ko. So, the graph 
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K of the meet topology a A fl is the transitive closure of the graph whose 
arrows are the arrows of  P or Q: 

GO(, a A fl) =TC!  ( G(X, a) u GO(, fl)) (2.5) 

The operation TCI is adequately described in terms of  Boolean matrices. 

3. BOOLEAN MACHINERY 

The calculus described in this section is based on Boolean arithmetics. 
It operates with vectors and matrices over the Boolean space B ~ = g ,  which 
is the two-element ordered set :~ = {0, 1 } with the operations of  conjunction 
(or product A ), disjunction (or sum v ), addition modulo 2 (or symmetric 
difference ~ )  and negation (--7) defined for x, y e g  as follows: 

x y xy (or XAy) x v y  XO)y ~ (or--qx) 

0 0 0 0 0 1 
0 1 0 1 1 1 
1 0 0 1 1 0 
1 1 1 1 0 0 

(3.1) 

The n-dimensional Boolean space B" consists of  all n-tuples of  elements 
of  g with the operations (3.1) defined coordinatewise. Boolean spaces are 
naturally partially ordered: given two vectors g, heB ~, 

g<h if and only if gi<hi for any i =1 . . . . .  n (3.2) 

This is called the binomial order on B". 
Any labeled directed graph G of n vertices can be unambiguously associ- 

ated with a Boolean n x n matrix, called its incidence matrix Go, in the 
following way: the vertices are enumerated by 1 , . . . ,  n, and 

f l if there is an arrow stretching 
Go = from vertex i 

to vertex j 

0 otherwise 

(3.3) 

The Hasse graphs associated with finite topologies have the special 
features outlined in the previous section: reflexivity and transitivity. In 
Boolean terms, the reflexivity is expressed as 

Gi; = 1 for any i=  1 . . . . .  n (3.4) 
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while the transitivity is expressed as 

G~k=l and Gkj =1 implies G0=l  (3.5) 

The usual matrix product in the space of all Boolean n x n matrices can 
be introduced: 

(eQ)o.= ~/ (PikQkj) (3.6) 
k = l  

Denote by T(X), or T(n), or simply T if no ambiguity occurs, the set 
of all Boolean matrices which are incidence matrices of Hasse graphs associ- 
ated with topologies on a set X, of cardinality n. It follows from the condition 
(3.4) that 

(G")u = (GG)~:> G o (3.7) 

and the transitivity condition (3.5) yields 

(GG)u<_ Gu 

Hence the necessary and sufficient condition for a Boolean matrix G to be 
an element of T is 

G,= 1 
(3.8) 

G,j= (G")ij for any positive integer m 

The operations on topologies can be translated into Boolean language. 
Let a, f l eT(X)  be topologies on X, and P, Q be their Hasse graphs and Pu, 
Q~: be the incidence matrices of P, Q, respectively. Let K be the Hasse graph 
of the join a v ft. Hence its incidence matrix K,j, as follows from (2.4), is 

Ko" = Pu Qo (3.9) 

To avoid confusion with tensor notation, I emphasize that in this paper there 
is no summation over repeating indices. All operations will be written explic- 
itly as, say, (3.6). 

To describe the meet a ^ fl, first note that the graph K0 described at the 
end of Section 2 has the incidence matrix K0u = Pu v Qu. Its transitive closure 
K= TCI Ko is the least [under the partial order (3.2)] matrix satisfying the 
conditions (3.8). So K u has the general form 

K,~ = 9 (Kb")u 
m =  | 

Consequently, due to (3.4) and (3.7), it is equivalent to 

K= (Ko) "-1 = (P v Q)"-~ (3.10) 

where n is the cardinality of the set X. 
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The Boolean machinery I suggest consists of tools which allows one to 
describe transitions from a topology a to some other one p on a given set 
X. This transition will be described as a travel along the lattice T= T ( X )  of 
all topologies of X. Each step of this travel will be an elementary operation 
of minimal change of topology: weakening or strengthening it. Two types 
of such elementary operations will be described. The first is the minimal 
weakening of topology, it will be called stretching (an arrow). The second 
strengthens the topology and I shall call it a cutting (or separation of 
cliques). Let us consider them in detail. 

The stretching operator S pq (p ,  q e X ,  p # q )  weakens a given topology 
a in such a way that S " q a  is (i) the strongest topology which is not stronger 
than a and (ii) whose Hasse graph contains the arrow stretched from the 
vertex p to q. First consider this operation in terms of Hasse graphs. Let G 
be the Hasse graph associated with a. Evidently, if G already contains the 
arrow p ~ q the operator S pq does not change the topology. Suppose 67 does 
not have this arrow. Adding it to G, a new graph, denote it 6; u A pq, is 
obtained which is not transitive in general. To make it transitive one must 
also stretch the arrows from each vertex connected with p (includingp itself) 
to each vertex with which q is connected (including q itself). Consider the 
example of Figure 5. In terms of Boolean matrices the stretching operator 
looks like 

( SpqG)u = G~: v (G~ Gq:) (3. I I) 

The example adduced above in Boolean terms has the form: 

[i l ~ [ilil G= 1 0 1 1 
0 1 S23G= 0 1 

0 0 0 0 

The meet of topologies can be described in terms of stretching operators 
S pq. Indeed, given two topologies associated with the Hasse graphs P and 
Q, their meet can be obtained by the consequent application of stretching 
operator S to P: 

TCI ( P  u Q)  = sPq . . . Sr~P 

where the pairs of indices p q  . . . .  , rs run over all arrows of Q, or, 
equivalently, 

TCI (P w Q) = SU.. .  Sk~Q 

where the pairs/j, . . . .  k l  run over all arrows of P. 
The operation of strengthening of topology deals with cliques. Recall 

that a clique Q is a complete subdigraph of G, namely each pair of vertices 
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8 

~o 

0 ~ ' - o  

0 O - - - - - - - - - - i ~  0 

0 , 0 

o . . . .  o ~ o 

o o ~ o  
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q, q'~ Q are connected by the arrows q--+ q' and q'-+ q. In particular, each 
point xeX  is a clique. Considered as components of  pattern spaces, cliques 
are pointlike objects. Let P, Q be two nonintersecting cliques. If  there is an 
arrow from a point of P to some point of  Q, then due to transitivity, each 
point of  P is connected with each point of Q. 

The cutting operator C pQ separates the cliques P and Q by cutting all 
darts going from P to Q. The special case of  cutting operator is dragging 
out a subclique from a clique (in the case when the union P u Q is the clique 
itself). Consider an example. Let IXI = 6 and the topology a be associated 
with the Hasse graph G. The subsets P =  12={1, 2} and Q=45 are the 
cliques. The operator C l'Q drags out P from P u Q = 1245, while cQec ea 
separates P and Q completely (Figure 6). 

Remarks on Notation. As I mentioned in Section 2, no ambiguity occurs 
when some composite arrows are omitted. In addition, the heads on two- 
sided arrows are omitted. For example, Figure 7 shows graphs that describe 
the same clique. 

To describe this operation in Boolean terms, first introduce the matrix 
A Q: 

ee ._{;  i f i e e a n d j e Q  
Aij . -  otherwise 

Then the cutting operator C p~ will act as 

(CeeG)/:= ~/ - ee - eo (GikAik )(GkjAk: ) 
k = l  

So, when a composite arrow is cut, the "wounded" graph "arrows over" 
due to the transitivity of  Hasse graphs. 

To clear up the structure of  pattern spaces, I introduce one more opera- 
tor strengthening the topology, called the discretizer DC, which turns the 
finite topological space into the discrete union of  cliques. In Boolean terms 
the discretizer has the form 

(DC G)u = G~G:i 
The action of the discretizer on the graphs considered in the previous 
example will look as shown in Figure 8. In other words, the discretizer 

A = G = ,.- .,.A 

Fig. 7. 4-clique. 
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deletes all one-sided arrows. To restore the initial graph G from its discretized 
remainder DC G, the lacking arrows must be added using the stretching 
operator S pq. Thus, if H =  DC G, then G= s~q . . .  SrSH, where the pairs 
pq . . . . .  rs run over the lacking arrows, while all these lacking arrows are 
the nonzero elements of the matrix GpqGqp (recall that no summation over 
repeating indices is performed). 

Finally, the operator of underlying graph construction UN adds to each 
arrow its inverse, making the graph nonoriented (and a non-Hasse graph as 
well). In Boolean terms the operator UN looks like symmetrization: 

(UN G)~=GuvGj~ 

An example is given in Figure 9. 

4. SURGERY 

As already mentioned, the pattern spaces are finite topological (FT) 
spaces which are patterns of real space (or spacetime) in the sense that they 
are of the same homotopical type. In this section, I describe the elementary 
constituents of pattern spaces and the tools for operating with them. 

Begin with the study of the connectedness of  FT spaces. Let x, y be two 
points of an FT space X connected by an arrow of the Hasse graph G, say, 
xry. Consider the mapping p: [0, 1] ~ X  defined as follows: 

p(t)={x, O<t< �89 
y, �89 

Let A be an open subset of X and consider its inverse image p-J(.4): 

t ~ if {x,y}c~A=~ 
p-~(A)= (�89 1] if yeA and xr 

t[0, 1] if {x,y} c A  

Thusp-~(A) is always open in [0, 1]. The case y~A and xeA is excluded 
since A is the open subset of X and contains the monads of each of its 
elements (see Section 2). That means that there is a continuous mapping 
p: [0, 1] ~ X  such thatp(0) = x  and p(1) =y ;  thus, there is a path from x to 
y. It is a general topological fact that if there is a path from x to y, then 
there is always a path from y to x. Therefore, recalling the notion of the 
underlying graph UN G (Section 3), I can assert that if the points x, y are 
connected by a sequence of arcs of the underlying graph UN G, then there 
is a path from x to y in the topological space X, and vice versa. Due to 
transitivity of the relation "can be connected by a path," the following two 
statements are equivalent for any pair x, y of points of X: 
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(i) There is a path from x to y in the topological space X. 
(ii) There is a path from x to y along the underlying graph UN G of 

the Hasse digraph G associated with the space X. 

Now dwell on the elementary constituents of pattern spaces. The first 
one, which I shall call a cell, is the FT space of four points whose Hasse 
graph is shown in Figure 10. The cell C is a retractable space, namely each 
loop in C is homotopic to the constant path. To corroborate this, I adduce 
the mapping h: [0, 1] x [0, 1] --* C defined as follows: 

{2 if �89 and ~<t<~ 

h(s,t):= if ~ < s < l  and ~-<t_<�89 
if ~ < s < l  and 2< t<~  

otherwise 

which is continuous, and h(O, t )= a and h(1, t)~ abcda. 

C= 

d 
t 
Fig. 10. The cell. 

a 0 ~-ob 

d t ~--Oe 

Another elementary constituent is the hole H (Figure 11), whose funda- 
mental group is Z ~ since the closed path p: [0, 1] ~ H ,  

b if ~<t<�89 
]<.<2 c if ~ _ t _ ~  

p( t )= d if 2~<,r_.<ag 

a otherwise 

is unretractable to the constant path p(t)= a. It will be shown below that 
the holes can be obtained by pasting and cutting of a number of cells. 

eo,.~ 

H= 

Fig. 11. The elementary hole. a 

lab 

d 
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C= 

! 0 ._. ._._._._w~O 2 

D= 

3 ~ . . . . . . .  ~'-O4 7 

Fig. 12. Two cells before coupling. 

5 0 ~_ 0 6 

) . - - - - - - - - I p  o 8 

The surgeon creates new pattern spaces by sawing (using the stretching 
operator S) and cutting (using the operator C). As a first example of sawing, 
consider the coupling of cells. Let C and D be two cells (Figure 12). The 
coupling will be performed as the following sequence of operations: 

P0 = C u  D, Pl = S25Po, P2 = 852pi, 
(4.1) 

P3 = S 47/2, P4 = S 74p3 = P5 

The transition from P4 to P5 is a formal one since the cliques play the 
role of  points in pattern spaces. In other words, the sequence (4.1) of  opera- 
tions pastes the arrows 4 ---, 2 and 7 ~ 5, and I shall call it pasting. 

Having a storage of  cells and pasting them along codirected arrows, the 
simplest pattern space, a piece of  a plane, can be obtained (Figure 14). The 
composite arrows on the diagram are, as usual, omitted. 

There are three kinds of vertices of  the Hasse digraph of  the plane, for 
example, a, b, and d. Further pasting yields standard topological patterns: 
a cylinder, which is obtained by a pasting of  the sequence of  arrows 
(1 *- 2 ~ 3 ~- 4 -* 5) with (6 *-- 7 ~ 8 ~- 9 -* 0), and a Mfbius  strip produced 

1 ~ 2 5,._....6 

P~ 3~_~ 4 7 ~ 8  

I 2 5 6 

,: :2! 
1 2 5 6 

3 4 7 8 

Fig. 13. 

1 2 5 6 

3 8 

I 2 5 6 

3 4 7 8 
1 25 6 

3 47 8 

The stepwise pasting of cells. 

= Ps 
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G= 

2 3 4 5 

a i  b' c 
~ m a ~ i . - - - - ~  O ~ O , , m a . - - - . ~  O 

d [  e f 
q O , - ~ - . - - . - - O . - - - - - . J m ~  , ~ 0 

6 7 8 9 0 
Fig. 14. A piece of plane. 

P 

l 

by a pasting of  the sequences (1 +-- 2 --+ 3 +-- 4 ~ 5) and (0 <--- 9 --+ 8 <-- 7 --+ 6). 
Their borders are given in Figures 15 and 16, respectively. Pasting the pairs 
of arrows (56--+7,8--+7) and (t--+u, O1--+u) by means of  the operator 
S76878SutS uO reduces it to the standard hole H (cf. Figures 11 and 16). 

16 r 

r q 

Fig .  15 .  

50 

1 ---'~ , o f  
u 

The border of the cylinder is the pair of holes. 

56 s t 
0 " - - ~ 0  ' - , ~  0 

70 o u  

t t 
9 01 

5678 
0 �9 ~ -~0  8 

l______o 
9 tu01 

Fig. 16. The border of the Mfbius strip: (a) initial, (b) reduced. 
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Fig. 17. 

p4 

q 

r ,  

2 3 4 5 

7 8 9 - 0  

1 2 

6 7 

3 4 5 

t_t 
8 9 0 

Making the hole by deleting (a) the point b, by the operator HbG; (b) the point e, 
by the operator HeG. 

Another kind of  operation performed on the pattern plane (Figure 14) 
is making a hole. To do this, choose a point, say b, and consequently apply 
the cutting operators to all its adjacent arrows; as a result, a hole of the kind 
in Figure 15a appears: HbG=Cb"CbcC3bC~ while the point b becomes 
separated (Figure 17a). Deleting the point e from the pattern plane by means 
of  the operator H e = Ca~176176176 yields the standard hole dbfh (cf. Figures 
11 and 17b). 

P 

Po=q 

r 

2 3 4 5 

t t - ' fu 
6 7 8 0 

2 3 4 

Pl--q ~ ~ o ,_ o t 

6r.-i-2Ui-.. 
7 8 9 

Fig. 18. 

3 K 

ei , \  b 

8 e 

Stepwise squeezing of the border gives the pattern sphere. (Recall that the points on 
the figures may denote cliques as well.) 
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1 . . .  2 ~ . . 3  4 " 5 
I i I I ! ! 

G = q [  d I, f l  I 

g~ i t r ~ . .."~.~ - h-/ . . i~d.. _ . )l u 

I I I 
L_ . , ~ 4 . - . . ~ .  _ # ~ . . . J  

6 7 8 9 0 

p*  

G ' = q '  

r t ,  

6' 7' 8' 9"' O' 

2 3 

_1~ b' 

d '  
r 

g~ h' 

Fig. 19. The holes before pasting. 

4 

'2,.. 

J 
m 

t" - ' t / - - ~ :  ; :  I 

I 

i - -  . ~  I j f 

1..- -I  -.~.~-,. - .A 

295 

5 

's '  

Fig. 20. The pattern wormhole. 

The pattern sphere S can be obtained from the pattern plane by squeez- 
ing all its border into the clique K= 12345stuO9876rqpacgi. The squeezing 
can be performed consecutively (Figure 18): Po=G is the pattern plane 
(Figure 14), Pt = SPlSssS~~ P2 = SI2854S~ and S =  S aqs 3iS SqS Stp2 
(Figure 18). 

More complicated patterns may be obtained by making holes and past- 
ing them to the borders of cylinders or other patterns. One more example 
seems rather attractive. That is the production of a wormhole. Given two 
pattern planes G, G', they can be considered as fragments of a greater pattern 
space. As a first step (Figure 19), the operators H e and H e' (Figure 17) are 
applied to G and G'. At a second step (Figure 20), the borders of the holes 
obtained at the first step are pasted. 
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Note that the pattern wormhole is rather uniform: it consists of four 
usual cells (a*--bb' ~ a '  ~dd') ,  (c~bb '  ~ c '  ~ f f ' ) ,  ( i~hh '  ~ i '  ~ f f ' ) ,  and 
(g ,,-- hh' ~ g' ~ dd'). 

5. BOOLEAN SUPERSPACE AND DYNAMICS 

In terms of the calculus proposed, the superspace is to some extent the 
storage of all possible pattern spaces. The natural realization of this idea is 
to consider a finite set X of points (events) of a fixed cardinality IX[ = n and 
use the lattice r(X) of all topologies on X as configuration space (Isham, 
1989). However, within the bounds of fixed cardinality the variety of possible 
topological patterns will always be restricted. The Boolean machinery allows 
one to broaden this approach. 

As described in Section 3, any topology on the finite set X, card X = n, 
can be associated with a Boolean matrix (3.3). The size of the matrix is n x n. 
To describe the cutting/pasting of pattern spaces, some means to describe 
separated/unseparated pattern spaces are needed. I claim that the pre-Regge 
calculus already possesses such means. Namely, two separated pattern spaces 
can be described as clopen (closed and open at once) subsets of a greater 
topological space. This combined pattern space can in turn be described by 
the Boolean matrix of size (m + n) x (m + n), where m, n are the cardinalities 
of the components. These are the preliminary reasonings motivating the 
following definition: 

The Boolean superspace BS is the collection of all Boolean matrices of 
infinite size satisfying the following conditions: 

a. Reflexivity: G;i= 1 for any i= 1, 2 , . . . .  
b. Finiteness: card{Go.lir j and Go.= 1} < oo. 
c. Transitivity: (G")u= G U for any integer m. 

The condition of finiteness means that any pattern space is considered 
as a finite topological space accompanied with an infinite number of isolated 
points, which can be attached for building new patterns. 

Both stretching and cutting operators can be evidently extended to the 
whole BS since all their nontrivial action is performed on finite sets. There- 
fore, given a pair of arbitrary pattern spaces P, Q, both can be considered as 
elements of BS. The transition from P to Qcan be performed by consequent 
application of stretching and cutting operators S and C or, in other words, 
as a path in BS. Given the initial P and final Q pattern spaces, there are 
infinitely many paths from P to Q in BS. To illustrate this, consider the 
simplest example: two ways of making the transition of the cell into the hole 
(Figures 21 and 22). 
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The main problem I wish to outline is to define the amplitudes of  elemen- 
tary transitions. With the amplitudes defined, each pair of pattern spaces 
could be associated with the transition amplitude (PIQ) defined as a 
Feynman sum over all possible paths G~ . . . . .  Gm from P to Q: 

( e l a ) = ~  (PIG,)(G, IG2)" " " (GmIQ) (5.1) 

The amplitude of the elementary transitions SrqG and CPQG must have 
values depending on (i) the form of the Hasse graph G associated with the 
initial pattern space and (ii) the parameters of the operator S or C. 

6. CONCLUSIONS AND PROSPECTS 

First I put together the principal items of the proposed calculus: 
1. A finite topological (FT) space, called pattern space, is used to simu- 

late real spacetime up to the homotopical equivalency. 
2. Each FT space can be naturally quasiordered by the relation of 

unseparability (2.3). 
3. A finite quasiordered space is associated with the directed Hasse 

graph whose vertices are points and whose arrows connect quasiordered 
points. 

4. The Hasse graph is associated with its Boolean incidence matrix 
(3.3). 

5. Since all topologies on a given finite set X form a finite lattice, given 
any pair of topologies on X, the transition between them can be decomposed 
into a sequence of elementary weakening and strengthening of the topology. 
This is the way to obtain new topological patterns (Section 4). 

6. The pattern superspace is the Boolean space BS of all infinite 
Boolean matrices satisfying certain conditions (Section 5). Thus, given two 
pattern spaces, the stepwise transition from one of them to another is consid- 
ered as a path in BS. 

The main problem is to introduce some apparent definition of the 
amplitude of an elementary transition in order to assign the transition 
amplitude to any pair of pattern spaces in Feynman's way (5.1); then the 
quantization of the global topology can be described in terms of pattern 
spaces. 

The variations of pattern space topology can be simulated on a 
computer by means of Boolean machinery (Section 3). From this point of 
view, the pattern spaces can be considered as the background for cellular 
automata whose evolution can be associated with the topological dynamics 
or motion in the spacetime. I emphasize that in terms of the proposed 
calculus there is no difference between the spacetime motion and motion in 
spacetime. 
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The dynamics of systems described by graphs or Boolean matrices has 
been studied from various points of view. Boolean dynamical systems (Boch- 
mann and Posthoff, 1981) are now mostly used in applied science. However, 
the Boolean differential calculus worked out within this approach seems to 
be applicable for pattern space dynamics. The transition systems (Finkelstein 
and Finkelstein, 1982) are abstract automata endowed with a number of 
controls. In terms of the pre-Regge calculus, these controls might describe 
elementary transition operators. Finally, the approach based on simulating 
automata (Grib and Zapatrin, 1990, 1991) attempts to introduce transition 
probabilities without using amplitudes, which are replaced by weights on 
apparent graphs. It brings nothing new in conventional quantum mechanical 
computations, but may be a powerful tool in cases when the Hilbert space 
formalism is not applicable. Note that the lattice of all topologies is comple- 
mented but has no unique complements. Thus, it can hardly be embedded 
into a projector algebra, while the description of such systems in terms of 
simulating automata does not encounter such difficulties. 
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